
Оренбургский государственный медицинский университет Кафедра Биологии Дисциплина Биология

Лекция № 1.
Формы жизни. Про- и эукариотический клетки. Основные структурные компоненты клетки.
Органоиды. Включения.

Доцент кафедры биологии, к.б.н. Тихомирова Галина Михайловна

Человек – объект живой природы

«Жизнь есть способ существования белковых тел...»

Фридрих Энгельс

1820 - 1895

«Живые организмы представляют собой открытые, саморегулирующиеся, самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот».

Михаил Владимирович Волькенштейн (1912-1992)

Основные свойства живого

- Химический состав
- Дискретность и целостность
- Структурная организация и саморегуляция
- Обмен веществ и энергии
- Способность противостоять росту энтропии.
- Самовоспроизведение и самообновление (репродукция)
- Наследственность
- Изменчивость
- Рост и развитие
- Раздражимость и движение
- Хиральность
- Асимметрия

Уровни организационной сложности живых систем

- 1. Молекулярно-генетический уровень
- 2. Клеточный уровень
- 3. Тканевый уровень
- 4. Органный уровень
- 5. Организменный уровень
- 6. Популяционно-видовой уровень
- 7. Биогеоценотический уровень
- 8. Биосферный уровень

Иерархичность природных структур — это отражение системности природы: *структуры одного уровня входят как подсистемы в структуру более высокого уровня, обладающую интегративными свойствами*

Иерархическая организация живого

Иерархическая организация природных биологических систем

Иерархическая организация природных экологических систем

Биологические системы

Экологические

системы

- →биополимеры
- → органеллы
- \rightarrow клетки
- → ткани
- → органы
- → организмы
- → популяции
- → виды

- → особь
- → популяция
- → биоценоз
- → биогеоценоз
- → экосистемы более высокого ранга (саванна, тайга, океан)
- → биосфера

Биология — наука о жизни, её формах и закономерностях развития

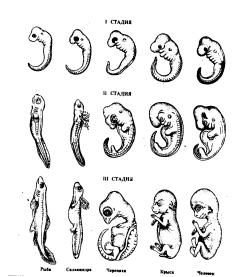
Жан Батист Ламарк 1744-1829 г.г.

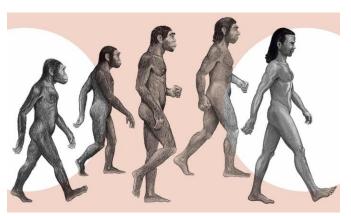
Термин биология (от греч.bios — жизнь и от лат.logos — наука) предложил Жан Батист Пьер Антуан де Моне Шевалье де Ламарк

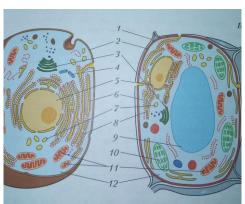
Биология - это совокупность наук о живой природе

Предмет изучения биологии:

- Многообразие вымерших организмов;
- Строение организмов (от молекулярного до анатомоморфолгического);
- Функции;
- Происхождение;
- Индивидуальное развитие;
- Эволюция;
- Распространение;
- Взаимоотношения организмов друг с другом и окружающей средой;




«Медицина, взятая в плане теории – это прежде всего, общая биология»....


Давыдовский Ипполит Васильевич (1887 -1968) советский патологоанатом, академик АМН СССР

Программа курса включает следующие разделы:

- Биология клетки;
- Биология развития;
- Генетика;
- Антропология

Цитология (греч. "cytos"-клетка, "logos"-наука) — наука о клетке, изучающая строение и функции клеток, их размножение, развитие и взаимодействие в многоклеточном организме.

Роберт Гук

Термина "клетка" (1665 г.) впервые применил английский физик *Роберт Гук*.

Антонии Ван Левенгук усовершенствовал микроскоп, что позволило ему увидеть живые одноклеточные в капле воды.

В 1839г. была сформулирована клеточная теория, в основу которой были положены труды немецкого ботаника Маттиаса Шлейдена и немецкого зоолога Теодора Шванна

Теодор Шванн (1810-1882)

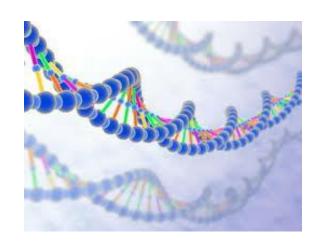
Маттиас Шлейден (1804-1881)

Основные положения клеточной теории

(по Ченцову Ю.С., 2004).

- **1. Клетка элементарная структурно-функциональная единица живого**, вне клетки нет жизни.
- 2. Клетка единая система, включающая множество закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц органелл или органоидов.
- 3. Все клетки гомологичны (сходны) по своему строению, химическому составу и основным свойствам.
- 4. Клетки увеличиваются в числе путем **деления исходной клетки** после удвоения ее генетического материала (ДНК): клетка от клетки.
- 5. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
- 6. Клетки многоклеточных организмов **тотипотентны**, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию к

Значение клеточной теории:

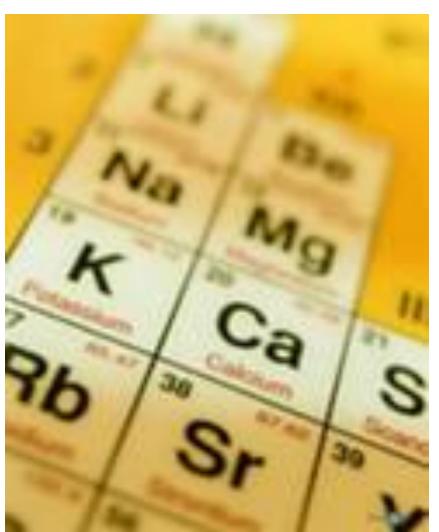

- доказательство единства клеточной организации и общности происхождения растений и животных (всего органического мира);
- сыграла огромную роль в развитии всех разделов биологии, особенно гистологии, эмбриологии, физиологии клетки, эволюционного учения, генетики;
- на ее основе сложилось и развивалось учение о болезненных процессах у животных, растений и человека.
- помогла объяснить основные закономерности живой природы с материалистических позиций

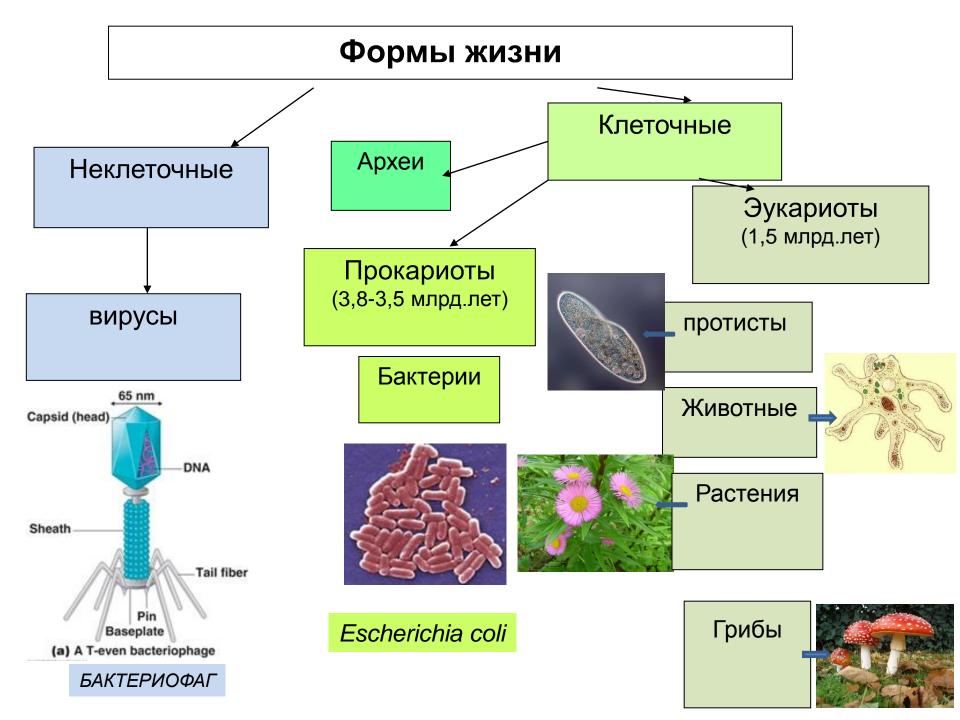
!!!

клетка – это элементарная открытая биологическая система, способная к самообновлению, самовоспроизведению и развитию.

Химический состав живого

Веществ, характерные только для живого:



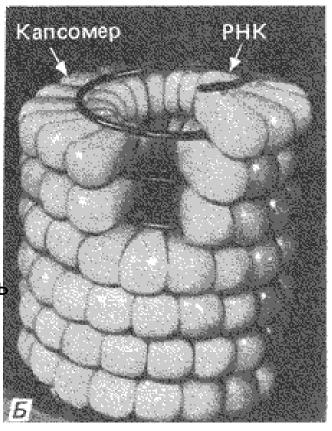

- нуклеиновые кислоты (ДНК, РНК, АТФ)
- белки
- липиды

Неорганические	Органические		
	Белки		
Вода	Жиры		
Минеральные соли	Углеводы		
	Нуклеиновые кислоты		

Элементы органогены

- Углерод (C) <u>главный элемент живого</u>,
- **Кислород (О)**,
- Азот (N),
- Водород (Н),
- Фосфор (Р),
- Cepa (S)

Неклеточные формы жизни. Вирусы.


Вирусы — это неклеточные формы жизни, которые являются облигатными внутриклеточными паразитами, т.е. они могут функционировать только внутри клетки. Вне клетки они называются — вирионы.

Первый вирус — вирус мозаичной болезни табака, поражающий хлоропласты растительных клеток, открыл в 1892 г. русский ученый Дмитрий Иосифович Ивановский.

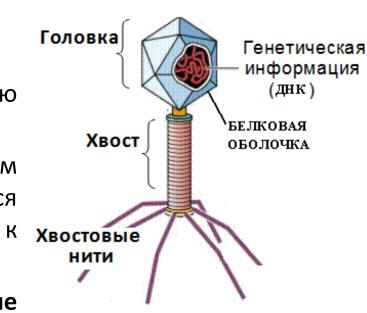
Свойства вирусов

- Нет клеточного строения
- Нет обмена веществ
- Нет дыхания
- Нет питания
- Не растут
- Нет бинарного деления

- Наследственность
- Изменчивость
- Размножение

Вирус табачной мозаики

Строение вируса


- Генетический материал: либо ДНК, либо РНК, составляющий сердцевину вируса.
- Капсид белковая оболочка окружающая сердцевину. В ее состав дополнительно могут входить липиды и углеводы.

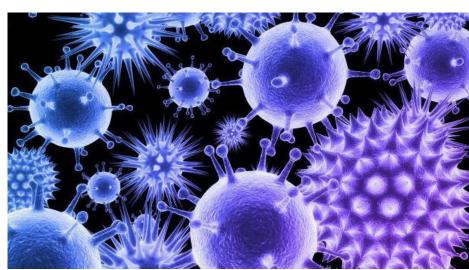
БАКТЕРИОФАГИ

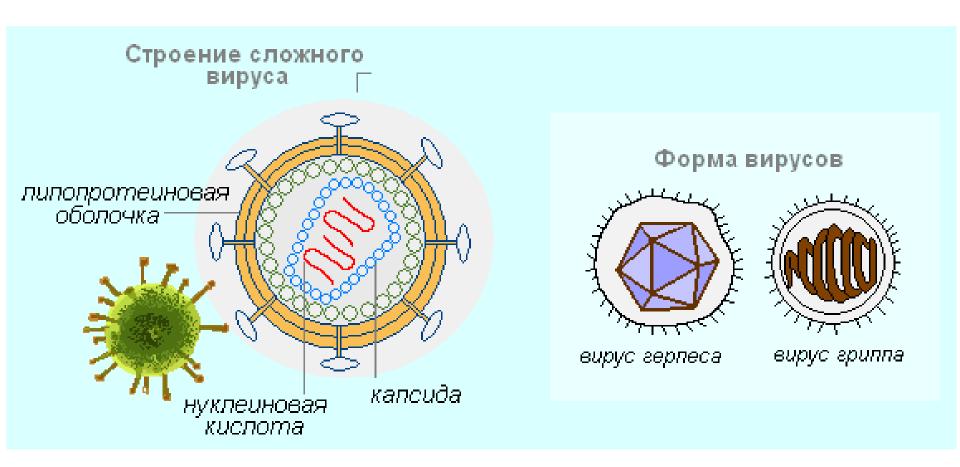
- вирусы, поражающие клетки бактерий.

Тело бактериофага состоит из:

- **≻белковой головки**, содержит вирусную генетическую информацию (ДНК),
- **≻хвост**, покрытого сократительным чехлом (хвостовой чехол), по которому перемещается генетический материал (ДНК) от вируса к бактериальной клетке.
- ➤На конце хвоста располагаются хвостовые отростки (нити), служащие для закрепления на поверхности клетки бактерии, и фермент, разрушающий бактериальную стенку.

Строение бактериофага


РНК-содержащие (ретровирусы)


- вирус табачной мозаики,
- грипп,
- корь,
- бешенство,
- энцефалит,
- краснуха,
- вирус иммунодефицита человека

(ВИЧ).

ДНК-содержащие

- аденовирус,
- герпес,
- оспа.

Жизненный цикл (размножение) вируса

ДНК-вирус		РНК-вирус		
1.	Прикрепление вируса к клетке-хозяина,	1.	Прикрепление вируса к	
2.	Проникновения внутрь.		клетке-хозяина,	
3.	Встраивают свою генетическую информацию в ДНК-	2.	Проникновения внутрь.	
	хозяина.	3.	Синтез с вирусной РНК	
4.	Синтез вирусных частиц (синтез белков и нуклеиновых кислот) клеткой-хозяина		вирусной ДНК (обратная транскрипция): РНК-вируса → ДНК-вируса.	
•	может реплицироваться вместе с ДНК клетки- хозяина, а затем синтезировать вирусные белки, при этом синтез собственных белков клетки-хозяина	4.	Встраивание вирусной ДНК в ДНК-хозяина.	
	подавляется.	5.	Синтез вирусных частиц	
•	либо может встраиваться в ДНК хозяина и оставаться в таком состоянии в течение нескольких поколений, реплицируясь вместе с ДНК хозяина.		(синтез белков и нуклеиновых кислот) клеткой-хозяина	
5. E	Выход вируса из клетки-хозяина и поражение других	6.	Выход вируса из клетки-	

ЦИКЛОВ

клетка

вирусами,

При этом вирусы могут «забирать» фрагмент ДНК

При заражении некоторыми

клетки не разрушаются, а наоборот начинают усиленно

После нескольких таких

делиться (может стать причиной онкологии).

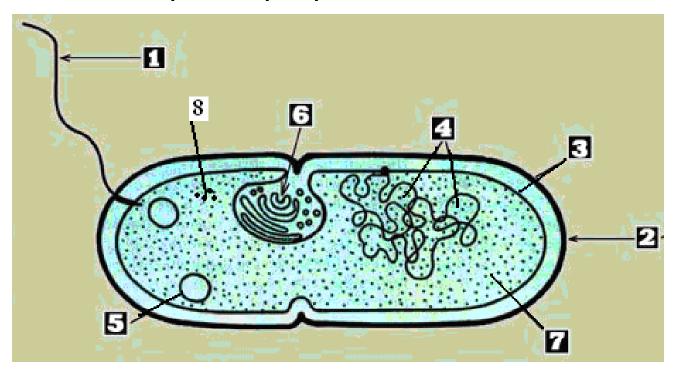
клеток.

хозяина.

погибает.

хозяина и поражение

других клеток.


Значение вирусов и фагов:

- 1) Возбудители заболеваний человека, животных, растений.
- 2) Объект нанобиотехнологии (генной и клеточной инженерии).
- 3) Бактериофаги могут использоваться как лекарства против возбудителей бактериальных инфекционных заболеваний (холеры, брюшного тифа и др.).
- 4) Фактор эволюции (источник комбинативной изменчивости трансдукция, источник мутаций).
- 5) Регулируют численность видов (т.к. паразиты).
- 6) Для борьбы с вредителями (биологический способ).
- 7) Биологическое оружие.

Клеточные формы жизни: прокариоты.

- ✓ Прокариоты (от греч. про до и карион ядро) это доядерные клетки не имеющие оформленного ядра.
- ✓ Появились на Земле около 3,5 млрд лет назад.
- ✓ Клетки прокариот имеют небольшие размеры, их диаметр составляет 0,3-5-10 мкм. (1мм= 10^3 мкм= 10^6 нм).

Строение прокариотической клетки

1 - жгутик.

2 – клеточная стенка,

3 – плазматическая

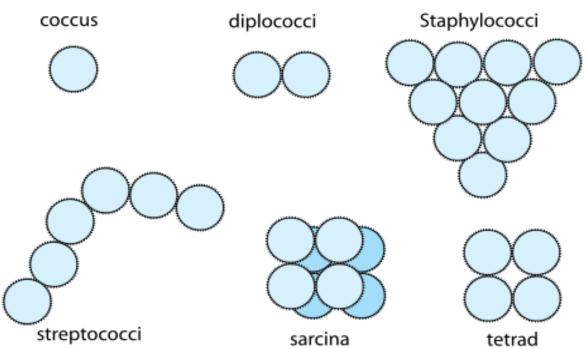
мембрана,

4 – нуклеоид,

5 – плазмида,

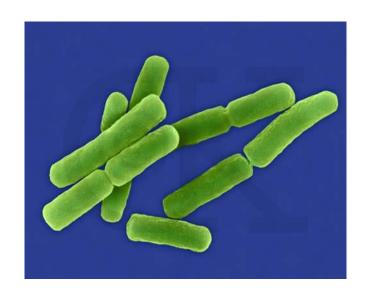
6 – мезосома,

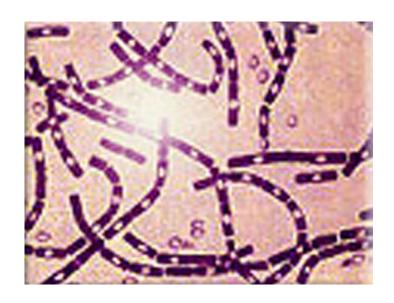
7 – цитоплазма,


8 – рибосома.

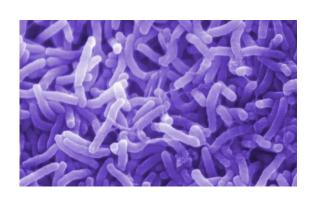
Строение прокариот:

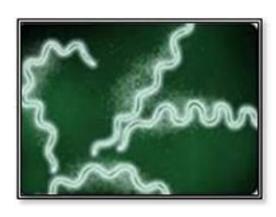
- 1)Генетический материал находится непосредственно <u>в цитоплазме</u> в виде кольцевой молекулы ДНК, которая НЕ окружена ядерной оболочкой. Место расположения ДНК в цитоплазме наз. *нуклеоид*.
- 2)В цитоплазме (жидкая часть клетки) прокариот можно обнаружить:
- ✓Органеллы (органоиды) у прокариот <u>незначительны</u>, у них <u>нет мембранных</u> <u>органелл</u>.
 - ✓ <u>Рибосомы</u> 70 S типа («мелкие») немембранные органеллы, участвующие в синтезе белков.
 - ✓ <u>Мезосомы</u> <u>выросты плазматической мембраны</u>, содержащие ферменты, участвующие в фотосинтезе, в процессах дыхания, синтезе ДНК и секреции белка (т.е мембрана окружает какой-то процесс).
- √Плазмиды это небольшая кольцевая молекула ДНК, лежащие вне нуклеоида. Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.
- 3) Плазматическая мембрана покрыта клеточной стенкой. Имеет более простое строение, чем у эукариот. Состоит из комплексов белков и олигосахаридов, уложенных слоями, защищает и отграничивает клетку и поддерживает ее форму. В состав клеточной стенки входи муреин.
- 4) Жгутик более просто устроен.


Классификация бактерий по форме (кокковидные бактерии)


Arrangements of Cocci

Пример: гонококк, пневмококк, менингококк, стрептококк


Классификация бактерий по форме (палочковидные бактерии - бациллы)



Пример: кишечная палочка, туберкулезная палочка, туляремийная, сибиреязвенная, реккетсии

Классификация бактерий по форме (извитые формы)

Спирохеты

Спириллы

Пример: возбудители сифилиса, возвратного тифа, холеры

Бактерии по отношению к температуре

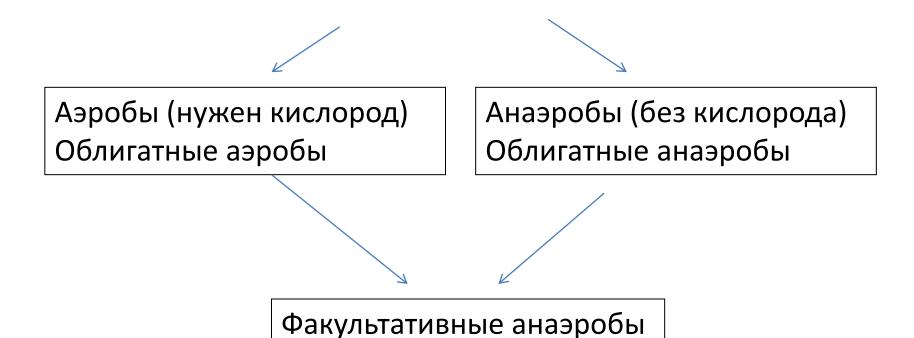
- Термофилы (обитают в кипящих ключах)
- Мезофилы (обитают при температуре 36-37 графусов)
- Психрофилы (обитают при низких температурах 0...-1 градус)

Классификация бактерий по типу питания и способу получения энергии

По источнику энергии

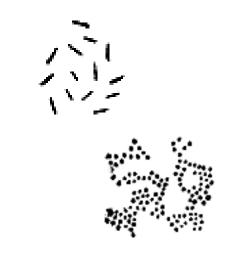
Фототрофы – используют энергию света, имеют пигменты.

Н-р: сине-зеленые водоросли


Хемотрофы — используют энегрию химических связей. Н-р: железобактерии, водородные бактерии, нитрифицирующие бактерии

По типу питания

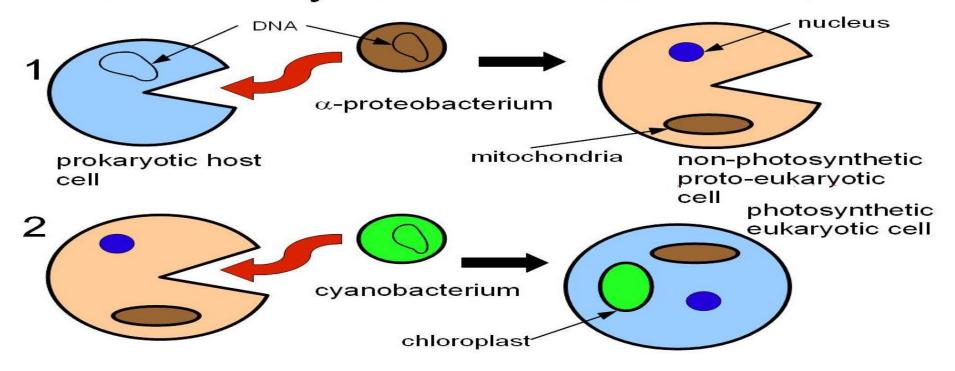
Автотрофы – используют СО₂ из воздуха


Гетеротрофы – питаются готовой органикой (сапрофиты, паразиты, симбионты, факультативные паразиты, облигатные паразиты

Классификация бактерий по отношению к кислороду (по дыханию)

Примеры бактерий человека:

- **Кишечная палочка** живет в кишечнике человека (симбиоз по типу мутуализма), «помогает» переваривать клетчатку, участвует в синтезе витаминов В, К, др.
- Стафилококки и стрептококки вызывают воспалительные заболевания человека.
- Холерные вибрионы возбудители холеры.
- Спирохеты возбудители сифилиса, возвратного **тиф**а, лептоспироза и др.
- Туберкулезная палочка возбудитель туберкулеза.
- Чумная палочка возбудитель чумы.
- -идр.


<u>Теории</u> происхождения эукариот:

- Симбиотическая
- Инвагинационная

Доказательства:

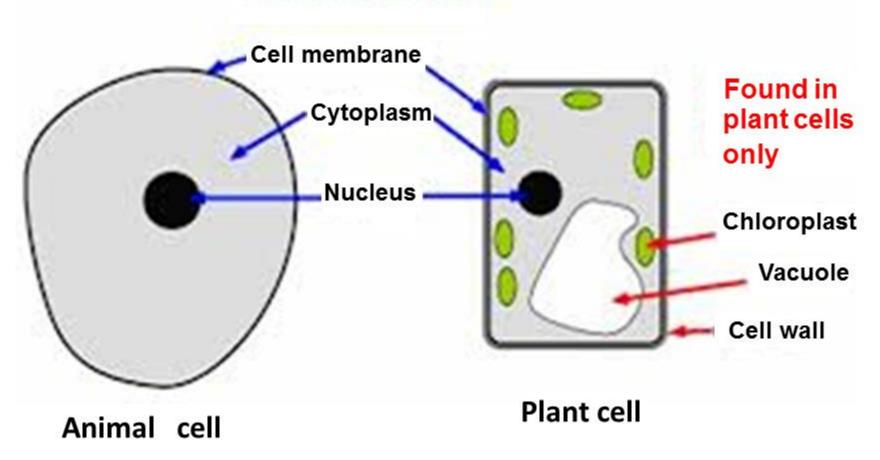
- Кольцевая ДНК,
- рибосомы 70S,
- две мембраны у митохондрий и пластид.

Two endosymbiotic events

Сравнительная характеристика прокариотической и эукариотической клеток

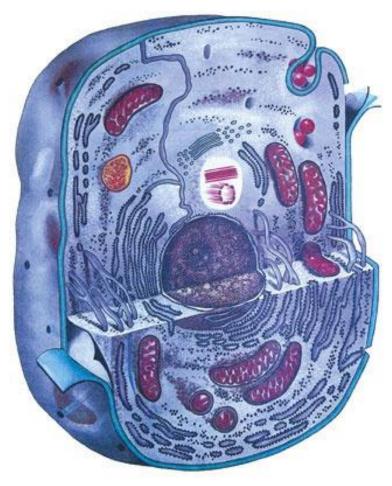
Признак	Прокариоты	Эукариоты
Размер	2-3 * 10 мкм	10 *100 мкм
ДНК	Генофор – кольцевая молекула	Хромосомы – линейные молекулы, связанные с гистонами и кислыми белками
Локализация ДНК	Нуклеоид	Ядро
Органеллы	Отсутствуют	Присутствуют
Способ деления	Прямое деление перетяжкой пополам, почкование	Митоз, мейоз, амитоз, апомиксис
Фагоцитоз, пиноцитоз, циклоз	Отсутствуют	Есть
Цитоскелет	Отсутствуют	Микротрабекулярная решетка
Рибосомы	70 S	80 S
Обмен веществ	Наличие аскорбиновой кислоты необязательно	Обязательное требование к наличию аскорбиновой кислоты
Двигательные приспособления	Жгутики, состоящие из флагеллина	Ундулиподии с кинетосомами

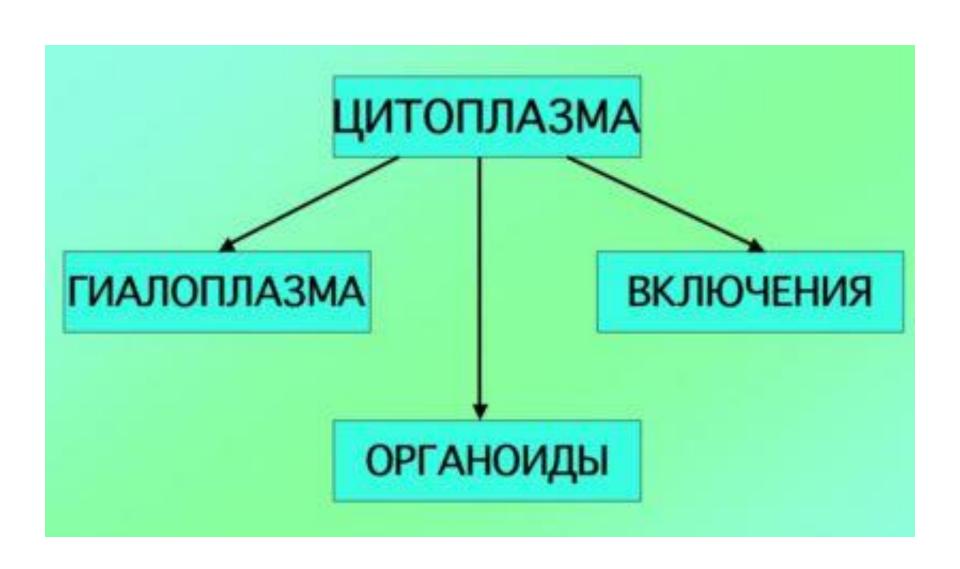
Эукариотические клетки основные структурные компоненты


Цитоплазматическая

		мембрана
Ядро	Цитоплазма	(Плазмолемма)
Кариолема	Гиалоплазма	Гликокаликс
		(надмембранный
		комплекс)
Кариоплазма	Органеллы	Элементарная
		биологическая мембрана
Ядрышко	Включения	Подмембранный комплекс
Хроматин		

Признак	Растительная клетка	Животная клетка	Грибы
Клеточная стенка	Имеется и состоит из целлюлозы	отсутствует	Имеется в состав входит хитин
Вакуоли	являющихся запасными или	Нет вакуолей с клеточным соком. Обычно мелкие вакуоли (везикулы): сократительные, пищеварительные вакуоли.	Имеются мелкие
Расположение	По периферии клетки	Равномерно по всей клетке	Равномерно по всей клетке
цитоплазмы			
Расположение ядра	На периферии	В центральной части	Ядер много и они распределены по всей цитоплазме
Пластиды	Имеются лейкопласты, хлоропласты, хромопласты	Отсутствуют	Отсутствуют
Реснички,	Как правило отсутствуют (нет у	Имеются	Отсутствуют
жгутики	высших растений)		
Клеточный центр	Как правило отсутствуют (нет у	Имеются	Отсутствуют
(центриоли)	высших растений)		
Способ питания	Автотрофный (фототрофный, хемотрофный)	Гетеротрофный (сапротрофный, паразитический).	Гетеротрофный (сапротрофный, паразитический).
Синтез АТФ	В хлоропластах, митохондриях	В митохондриях	В митохондриях
Расщепление АТФ	В хлоропластах и всех частях клетки, где необходимы затраты энергии	Во всех частях клетки, где необходимы затраты энергии	Во всех частях клетки, где необходимы затраты энергии
Включения	белка, капель масла; вакуоли с клеточным соком; кристаллы солей	Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты	_
Зпасное	Крахмал	Гликоген	Гликоген
питательное			
вещество			


Различия между животными и растительными клетками


Found in both cells

Цитоплазма – это все содержимое клетки за исключением ядра. В составе цитоплазмы выделяют: гиалоплазму, органеллы и включения.

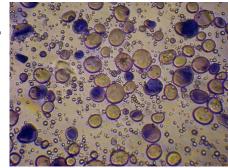
ГИАЛОПЛАЗМА

<u>ГИАЛОПЛАЗМА</u> (от греч. hyalos — стекло и плазма), основная плазма, матрикс цитоплазмы, сложная бесцветная коллоидная система в клетке, способная к обратимым переходам из золя в гель.

В состав гиалоплазмы входят растворимые белки (ферменты гликолиза, активации аминокислот при биосинтезе белка, многие АТФ-азы и др.), растворимые РНК, полисахариды, липиды.

Через гиалоплазму идёт транспорт аминокислот, жирных к-т, нуклеотидов, сахаров, неорганических ионов, перенос АТФ.

Состав гиалоплазмы определяет буферные и осмотические свойства клетки.



Включения

непостоянные образования цитоплазмы клетки, которые являются продуктами ее жизнедеятельности и расходуются

по мере необходимости.

- Трофические
- Секреторные
- Экскреторные
- Пигментные

Зерна крахмала

Гемоглобин в эритроцитах

Кристаллы оксалата кальция

Классификация включений

группа	пример			
трофические	- участвуют в депонировании питательных веществ.			
	Белки – алейроновые зерна в злаковых растениях.			
	Капли жира – в липоцитах,			
	Углеводы – гликоген в гепатоцитах и миоцитах,			
	крахмал в растениях.			
секреторные	- образуются секреторными клетками и			
	транспортируются для выполнения тех или иных			
	функций: ферменты, гормоны			
экскреторные	- участвуют в процессах выделения. В животных			
	клетках – соли различных кислот в растворенном			
	состоянии, в растительных клетках – кристал			
	солей.			
пигментные	- определяют окраску кожи, радужки глаз, цвет			
	крови, мочи.			
	Меланин в меланоцитах, гемоглобин в эритроцитах,			
	билирубин (уробилин, стеркобилин)- продукт			
	распада эритроцитов.			

Органоиды

постоянные клеточные структуры, имеющие определенное строение, химический состав и выполняющие специфические функции.

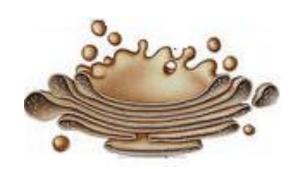
Клеточные органеллы Микротрубочки Образование цитоскелета Клеточная мембрана Гладкая эндоплазмотическая сеть транспорт евществ в/из клетки защита, рецепция синтез липидов и углеводов Участие в делении клетки хранение и реализация наследственной информации Митохондрия Синтез АТФ Шероховатая Комплекс Гольджи эндоплазматическая Синтез белкое Лизосомы переваривание вешеств

«Классификация органелл по строению»

мембранные

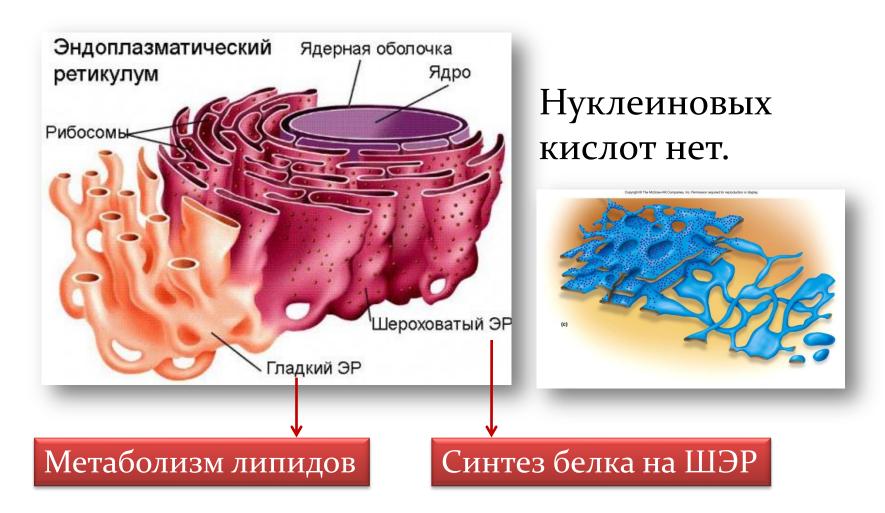
немембранные

одномембранные


двумембранные

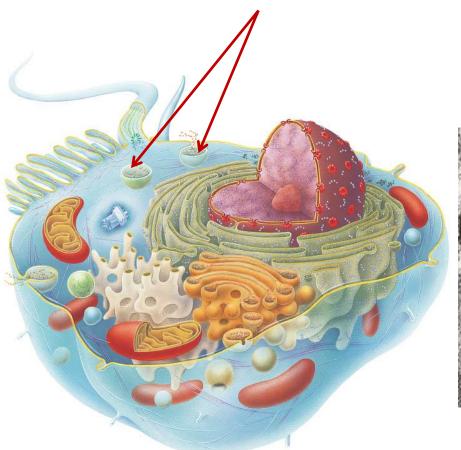
ЭПС Аппарат Гольджи Лизосомы Пероксисомы

Митохондрии Пластиды

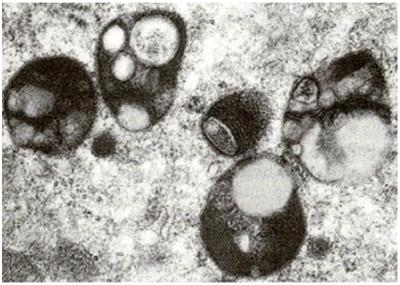


Рибосомы
Клеточный центр
Жгутики
Реснички
Микротрубочки
Микрофиламенты
Микрофибрилы

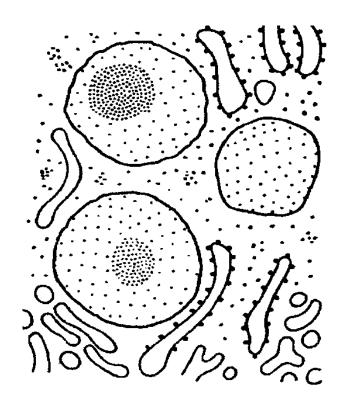
Одномембранные органоиды Эндоплазматическая сеть


•Информация о строении – в учебнике

Одномембранные органоиды - Комплекс Гольджи

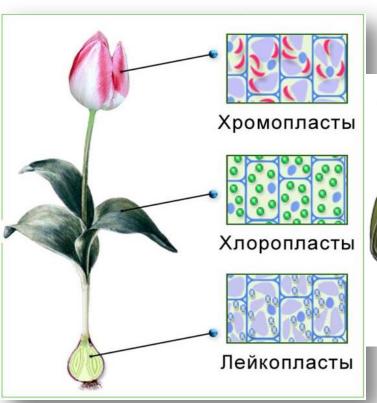


Нуклеиновых кислот нет.

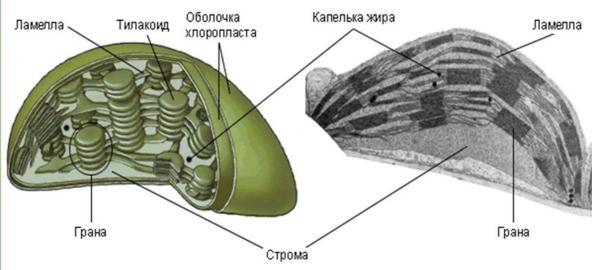

Одномембранные органоиды - Лизосомы

Нуклеиновых кислот нет.

Одномембранные органоиды - пероксисомы

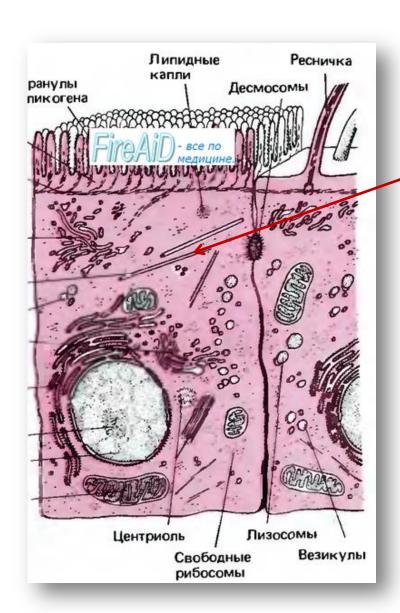


Двумембранные органоиды - Митохондрии

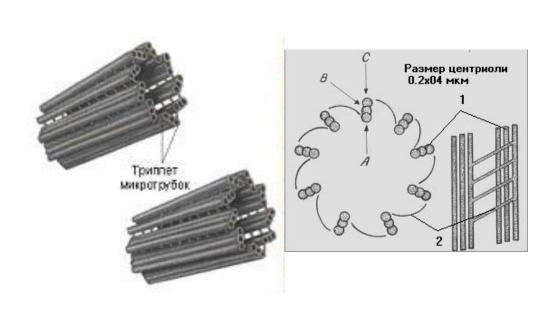

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

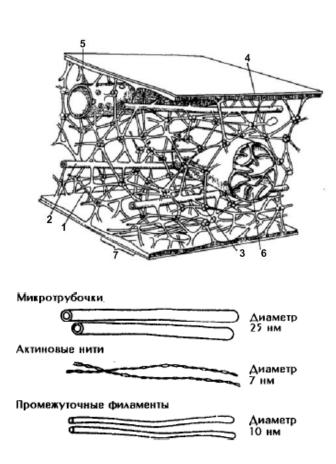
Двумембранные органоиды - Пластиды

Имеются ДНК, РНК


Немембранные органоиды - Рибосомы

Имеется рРНК


Немембранные органеллы


Микротрубочки

Нуклеиновых кислот нет.

Немембранные органеллы

Клеточный центр

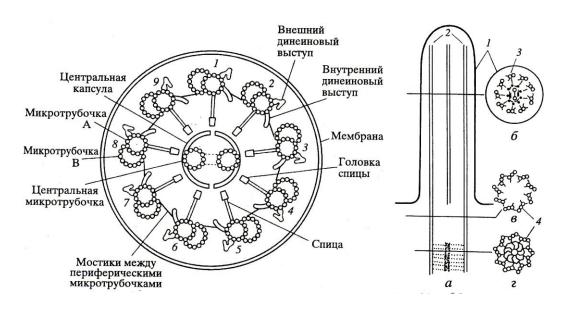
Цитоскелет клетки

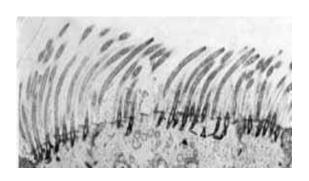
«Классификация органелл по значению в жизнедеятельности клетки»


Общего значения

Специального значения

Митохондрии ЭПС Аппарат Гольджи Клеточный центр Рибосомы Цитоскелет Лизосомы Пероксисомы


Реснички Жгутики Тонофибриллы Нейрофибриллы



Органеллы специального назначения

Микрофотография ресничек

Строение реснички или жгутика

«Классификация органелл по выполняемым функциям»

Функции	Органеллы
1. Органеллы, образующие цитоскелет клетки	Микротрубочки, микрофиламенты, микрофибриллы
2. Органеллы, участвующие в движении клетки и внутриклеточных структур	Реснички, жгутики
3. Органеллы, участвующие в биосинтезе веществ	Рибосомы, ЭПС
4. Органеллы, участвующие в энергопроизводстве	Митохондрии, пластиды (растительные клетки)
5. Органеллы, участвующие в пищеварении, защитных и в обезвреживающих реакциях	Лизосомы, пероксисомы
6. Органеллы, участвующие в накоплении и транспорте веществ	Аппарат Гольджи, ЭПС

«Классификация органелл по происхождению»

Первая гипотеза *симбиогенеза,* согласно которой произошли все двумембранные органеллы. Доказательством ЭТОГО может служить наличие двух мембран, собственного генетического материала виде кольцевой молекулы ДНК, собственные рибосомы частичная автономность (митохондрии, пластиды).

Вторая гипотеза — это гипотеза инвагинаций, согласно ей произошли все органеллы входящие в вакуолярную систему клетки, т.е. все одномембранные органеллы.

Спасибо за внимание!